L-Glutathion

Der menschliche Körper hat ein eigenes und beständig aktives System, um die Radikalbildung zu neutralisieren. Hierzu gehören essentielle Vitamine wie Vitamin C, Mineralstoffe wie Magnesium, Spurenelemente wie Zink und Selen, sowie das körpereigene Tripeptid Glutathion. Durch zunehmende Einflüsse von Umweltnoxen in Trinkwasser, Atemluft und Nahrungsmitteln ist das Redoxsystem allerdings einem beständigen Stress ausgesetzt. Als Folge dessen kommt es zum Absinken körpereigenen Radikalfänger, die durch die Nahrungszufuhr auch nicht mehr ausgeglichen werden können. Glutathion ist ein körpereigenes Tripeptid, welches in den Mitochondrien aus den Aminosäuren Glutaminsäure, Cystein und Glycin gebildet wird. Gemeinsam mit den Glutathion-abhängigen Enzymsystemen ist Glutathion essenziell für die Aufrechterhaltung des intrazellulären Redoxgleichgewichts, es ist das wichtigste Antioxidans innerhalb der Zellen. Es ist in jeder Körperzelle vorhanden und an zahlreichen Entgiftungs-, Transport- und Biosynthesefunktionen beteiligt. Glutathion ist als höchst effektives Antioxidans ein ganz wesentlicher Zellschutzfaktor, der vor allem die Fettsäuren der Zellmembranen vor oxidativen Schäden schützt, sowie auch Proteine und Nukleinsäuren. Wenn durch Glutathion freie Radikale abgebaut werden, dann geht die reduzierte Form von Glutathion in die oxidierte Form über (Glutathiondisulfid, GSSG). Eine gesunde Zelle enthält etwa 500 Mal mehr Glutathion in reduzierter als in oxidierter Form. Die Bildung der reduzierten Form des Glutathions hängt aber maßgeblich von der Verfügbarkeit der nicht essenziellen Aminosäure L-Cystein ab. Ein bestehender L-Cystein-Mangel geht immer mit einem Mangel an Glutathion einher. Solange Zellen einen ausreichenden Vorrat an reduziertem Glutathion haben, sind sie geschützt vor oxidativen Schäden. Lebensmittel enthalten sowohl reduziertes als auch oxidiertes Glutathion. Bei einer vollwertigen Ernährung, einem gesunden Lebensstil und ausreichend Bewegung, Meidung von Toxinen und Umweltbelastungen kann man davon ausgehen, dass der Körper über ausreichende Reserven an Glutathion verfügt. Frische Bierhefe hat den höchsten Gehalt an Glutathion, mit ca. 0,7 g pro 100 g Bierhefe. Weitere Glutathion-reiche Lebensmittel sind Avocados, Spargel, Wassermelonen und frischer Schinken. Aber auch Obst und Gemüse enthalten ähnliche Mengen an Glutathion, vor allem Walnüsse und Erdnüsse. Wichtig ist dabei, dass die Lebensmittel frisch und nach Möglichkeit roh verzehrt werden, denn bei der Verarbeitung wird Glutathion oxidiert. Therapeutisch ist nur die reduzierte Form des Glutathions mit einer freien SH- Gruppe wirksam. Dieses wird in den Protokoll-Lösungen eingesetzt. Funktionen von Glutathion: Durch die innerhalb der Mitochondrien ablaufenden Reaktionskaskaden entstehen ständig aggressive chemisch-aktive Verbindungen, sogenannte freie Radikale. Sie entstehen als Stoffwechselmetaboliten bei der Oxidation und sind für Schädigungen sowohl der Mitochondrien selbst, aber auch anderer Zellorganellen, der Zell-DNA und der extrazellulären Matrix verantwortlich. Für eine gut funktionierende Immunkompetenz reguliert Glutathion den Lymphozytenstoffwechsel, sowie die Aktivität von CD4-T-Helferzellen und NK-Zellen. Eine erhöhte Glutathionzufuhr ist dementsprechend zum Beispiel bei Infektionserkrankungen erforderlich. Es besteht allerdings nicht bei allen Patienten ein erhöhter Bedarf an Glutathion. Internationale klinische Studien zeigen, dass reduziertes Glutathion auch Tumorzellen in die Apoptose überführen kann und in der klinischen Anwendung Tumorremissionen unterschiedlicher Tumorarten bewirkt. Der Glutathion-Stoffwechsel spielt bei einer Vielzahl von bösartigen Erkrankungen sowohl eine positive als auch eine schädliche Rolle. Er ist für die Entfernung und Entgiftung von Karzinogenen von entscheidender Bedeutung, und Veränderungen in diesem Stoffwechselweg können das Überleben der Zellen tiefgreifend beeinflussen. Ein Überschuss an Glutathion fördert jedoch die Tumorprogression, wobei erhöhte Werte mit einer erhöhten Metastasierung korrelieren. Bei Tumorpatienten empfiehlt es sich daher, den intrazellulären Glutathiongehalt zu messen, da Glutathion die fixierte Alkalose (zu hohe pH-Werte, Basenüberschuss) verstärken und somit den Zellteilungszyklus erhöhen kann. Daher empfiehlt es sich, vor Verabreichung den Glutathion-Spiegel zu bestimmen, und dann zu entscheiden, ob man der Protokoll-Lösung Glutathion hinzufügen sollte oder nicht. Bei dem Endothelschutz ist Glutathion beteiligt, indem es die NO-Bioverfügbarkeit erhöht. Verschiedene zelluläre Prozesse werden durch Glutathion mitgesteuert, z. B. die Reparatur beschädigter DNA, die Teilung und das Wachstum von Zellen, sowie der Zellstoffwechsel. Glutathion vermittelt den Transport verschiedener Stoffe durch die Zellmembran. Die Bildung von Leukotrienen und Prostaglandinen (die Entzündungen und allergische Reaktionen im Körper auslösen und aufrechterhalten) benötigt Glutathion. Glutathion ist wichtig für die Schwermetallentgiftung, vor allem von Blei, Cadmium und Quecksilber. Quellen: Alberts B, Johnson A, Lewis J, et al.: Molecular Biology of the Cell. 2017 Bansal, A. & Celeste Simon, M. Glutathione metabolism in cancer progression and treatment resistance. Journal of Cell Biology 217, 2291–2298 (2018). Berg JM, Tymoczko JL, Stryer L. Stryer: Biochemie. 2018 Desideri, E., Ciccarone, F. & Ciriolo, M. R. Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients 11, (2019). Diaz-Vivancos, P., De Simone, A., Kiddle, G. & Foyer, C. H. Glutathione – Linking cell proliferation to oxidative stress. Free Radical Biology and Medicine 89, 1154–1164 (2015). Forman, H. J., Zhang, H. & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine 30, 1–12 (2009). Gould, R. L. & Pazdro, R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients 11, (2019). Gröber U. Mikronährstoffe – Metabolic tuning – Prävention – Therapie. 2011. Wissenschaftliche Verlagsgesellschaft, Stuttgart Kuklinski, B. Lunteren I. Gesünder mit Mikronährstoffen – schützen Sie Ihre Zellen vor „Freien Radikalen“. 2016. Aurum Verlag Meyer R. Chronisch gesund. 2009 Ross, A. C., Caballero, B., Cousins, R. J., Tucker, K. L. & Ziegler, T. R. Modern Nutrition in Health and Disease. The American Journal of Nursing (Wolters Kluwer, 2014).

Vitamin C (L-Ascorbinsäure)

Schon die Ägypter um 3.000 v. Chr. und Hippokrates um 500 v. Chr. beschrieben Vitamin-C-Mangel als Krankheit, die im 16. und 17. Jahrhundert als Skorbut bekannt wurde, die Krankheit der Seefahrer. Typische Symptome von Skorbut sind Nasenbluten, geschwollenes Zahnfleisch und verzögerte Wundheilung. Überall dort, wo Obst und Gemüse knapp waren, bestand diese Krankheit weiter, deren Heilung so einfach war – mit Zitronen und anderen Früchten sowie mit pflanzlicher Ernährung. Trotzdem wurde erst im 19. Jahrhundert der regelmäßige Konsum von Zitronen und deren Saft für die Matrosen der Handelsmarine und der Royal Navy obligatorisch. Im Jahr 1932 wurde die Ascorbinsäure als das „Antiskorbut-Prinzip“ in den Laboratorien von Szent-Gyorgyi bestimmt, der dafür im Jahr 1937 den Nobelpreis erhielt. Vitamin C ist in Pflanzenblättern und in Chloroplasten (den grünen Zellorganellen der Pflanzen) reichlich vorhanden und wird für das Pflanzenwachstum und der Entwicklung der Pflanze benötigt. Fast alle tierischen Lebewesen können aus Glukose Vitamin C bilden. Davon ausgenommen sind aber der Mensch, Affen, Meerschweinchen, Fledermäuse und einige Fische. Den Menschen fehlt ein wichtiges Enzym für die Umwandlung von Glukose in Vitamin C. Dieses Vitamin ist ein Elektronenspender oder Reduktionsmittel und alle seine bekannten Funktionen sind auf diese Eigenschaft zurückzuführen. Vitamin C spendet nacheinander zwei Elektronen aus der Doppelbindung zwischen den Kohlenstoffen zwei und drei. Wenn diese Elektronen verloren gehen, wird Vitamin C oxidiert und eine weitere Verbindung wird reduziert, wodurch die Oxidation der reduzierten Verbindung verhindert wird. Vitamin C ist daher als ausgezeichneter Radikalfänger – oder Antioxidans – bekannt. Tatsächlich ist Vitamin C der „Tausendsassa“ unter den Vitaminen mit vielfachen Funktionen: Eine funktionierende Immunkompetenz benötigt Vitamin C zur Stimulierung des zellulären und humoralen Immunsystems, zum Schutz der Phagozytenmembran vor oxidativer Selbstzerstörung, zur Aktivierung des Komplementsystems und zum Histaminabbau, bzw. Förderung von Wachstum und Wundheilung. Als Cofaktor von 9 Enzymen ist Vitamin C an der Biosynthese bzw. dem Stoffwechsel von Peptidhormonen, Norepinephrin, Kollagen, Carnitin, Cholesterin, Folsäure und Tyrosin beteiligt. Als zelluläres Antioxidans reguliert Vitamin C die Genexpression und die Bildung von Proteinen (Translation der mRNA) und verhindert oxidative Schäden. Außerhalb der Zellen fördert Vitamin C die Gefäßerweiterung, Endothelzellen werden geschützt und die NO-Bioverfügbarkeit verbessert. Extrazellulärer oxidativer Stress wird reduziert, sowie auch die extrazelluläre Oxidation von Lipoproteinen; die Bildung von Lipid-Peroxiden wird verhindert. Vitamin C regeneriert das Vitamin E-Radikal in das reduzierte und antioxidativ wirksame Vitamin E (α-Tocopherol). Zur Regeneration von Glutathiondisulfid zu Glutathion wird Vitamin C benötigt. Im Magen verhindert Vitamin C die Bildung von Nitrosaminen aus Nitrit und sekundären Aminen. Vitamin C bietet als Radikalfänger einen effektiven Schutz gegen toxische Produkte, die beim Rauchen aufgenommen werden oder entstehen, z. B. Cadmium, Nitrite oder polyzyklische Kohlenwasserstoffe. Raucher leiden daher unter ständigen Vitamin C-Mangel. Im Dünndarm fördert Vitamin C die Absorption von Eisen und wird benötigt zur Eisenübertragung von Transferrin (Transportprotein) auf Ferritin (Speicherprotein). Vitamin C wird zur Entgiftung benötigt, denn es hält die Schwermetalle im Körper in Lösung damit sie ausgeschieden werden können, anstatt in Geweben gespeichert zu werden. Zur Bildung von Neurotransmittern wird Vitamin C benötigt: Tryptophan wird in 5-Hydroxytryptophan umgewandelt (Serotonin-Vorstufe), die Biosynthese von L-Dopa gefördert und Dopamin zu Noradrenalin ungewandelt. Besonders viel Vitamin C ist in Zitrusfrüchten, Erdbeeren, Honigmelone, Cantaloupe-Melone, Kiwi, Papaya, Trauben und Äpfeln enthalten. Brokkoli, Paprika und Rosenkohl sind die Gemüsesorten mit dem höchsten Gehalt an Vitamin C. Bei abwechslungsreich gestalteten täglichen fünf Portionen Obst und Gemüse werden etwa 200 bis 300 mg Vitamin C aufgenommen. Die Empfehlung der täglichen 5 Portionen basiert auf mehr als 200 Studien, die den umgekehrten Zusammenhang zwischen dem Auftreten von Krebs und einem erhöhten Obst- und Gemüseverzehr bzw. der Aufnahme von antioxidativen Nährstoffen, einschließlich Vitamin C, beschreiben. Da Vitamin C nicht stabil ist, kann sein Gehalt in pflanzlichen Lebensmitteln je nach Jahreszeit, Transport, Haltbarkeit, Lagerung und Kochgewohnheiten variieren. Epidemiologische Studien beschreiben einen Zusammenhang zwischen dem Verzehr von Obst und Gemüse und dem Schutz vor Herz-Kreislauf-Erkrankungen. Der Verzehr von Obst und Gemüse war mit einer Senkung des Blutdrucks verbunden, einem Risikofaktor für Herz-Kreislauf-Erkrankungen. Allerdings ist bei der Prävention sowohl von Krebs als auch von Herz-Kreislauf-Erkrankungen nicht bekannt, ob der mit dem Obst- und Gemüseverzehr verbundene Nutzen auf das Vitamin C selbst, oder auf die Kombination aus Vitamin C mit anderen Inhaltsstoffen zurückzuführen ist. Vitamin C wird rasch wieder ausgeschieden, denn es gehört zu den wasserlöslichen Vitaminen. Nach nur 3 Stunden ist nur noch die Hälfte der ursprünglich aufgenommenen Menge im Körper vorhanden. Nach weiteren 3 Stunden ist davon wieder nur die Hälfte übrig usw. Daher soll die tägliche Einnahme von Vitamin C immer über mehrere Dosen verteilt werden. Wenn man z. B. 6 Mal pro Tag 250 mg aufnimmt, dann würde sich der Serumsspiegel zwischen 100 und 250 mg einpendeln. Indikationen für Vitamin C sind die allgemeine Prävention, Allergien, Asthma, allergischer Rhinitis, Katarakt, Makuladegeneration, Glaukom, Bluthochdruck, Diabetes mellitus, Dickdarmpolypen, Erkältungskrankheiten, Harnwegsinfekte, Herz-Kreislauf in Erkrankungen, Krebserkrankungen, neurodegenerative Erkrankungen, Paradontopathien, Rauchen, rheumatoide Arthritis, Stress und Wundheilungsstörungen. Eine wachsende Zahl von Studien hat gezeigt, dass Vitamin C Krebszellen in vitro abtöten und das Tumorwachstum in vivo verlangsamen kann. Vitamin C kann auf drei Schwachstellen abzielen, die viele Krebszellen gemeinsam haben: das Redox-Ungleichgewicht, die epigenetische Reprogrammierung und die Regulierung der Sauerstoff-Wahrnehmung. Obwohl Vitamin C nachweislich das Tumorwachstum in vielen verschiedenen Krebsmodellen reduziert, könnte das klinische Potenzial von Vitamin C als Krebstherapie auch in seiner kombinierten Anwendung mit anderen Krebstherapien liegen. Zahlreiche präklinische und klinische Studien weisen darauf hin, dass die parenterale Injektion von Vitamin C sogar synergistisch mit herkömmlichen Krebstherapien wirken könnte. Quellen Ames, B. N. & Gold, L. S. The causes and prevention of cancer: The role of environment. in Biotherapy 11, 205–220 (1998). Byers, T. & Guerrero, N. Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. in American Journal of Clinical Nutrition 62, (American Society for Nutrition, 1995). Willett, W. C. Fruits, vegetables, and cancer prevention: Turmoil in the produce section. Journal of the National Cancer Institute 102, 510–511 (2010). Boffetta, P. et al. Fruit and vegetable intake and overall cancer risk in the european prospective investigation into cancer and nutrition (EPIC). J. Natl. Cancer Inst. 102, 529–537 (2010). Hung, H. C. et…

Vitamin B12

Vitamin B12 ist das größte und komplexeste Vitamin im menschlichen Körper und besteht aus einer Ringstruktur, die dem Hämoglobin des Blutes und dem grünen Blattfarbstoff der Pflanzen (Chlorophyll) ähnelt. Dabei versteht man unter Vitamin B12 nicht nur eine einzige chemische Substanz, sondern 6 Verbindungen mit der gleichen biologischen Wirkung (Cyanocobalamin, Hydroxocobalamin, Aquacobalamin, Nitritocobalamin, Methylcobalamin und Adenosylcobalamin). Normalerweise wird dieses Vitamin über die Nahrung aufgenommen. Es ist an Protein gebunden und benötigt die Magensäure und das Verdauungsenzym Pepsin, um in seine freie Form zu gelangen. Danach kann sich das Vitamin B12 mit dem im Magen produzierten intrinsischen Faktor verbinden und wird im Dünndarm resorbiert. Der Körper kann Vitamin B12 über mehrere Jahre speichern, vor allem in der Leber. Vitamin B12 wurde erstmals vor mehr als 70 Jahren entdeckt, bei der Suche nach einer Behandlung der perniziösen Anämie, einer Form der Blutarmut die, wie sich später herausstellte, auf einem Vitamin B12-Mangel beruht. Das typische hämatologische Symptom eines Vitamin B12-Mangels ist die Anämie, meist verbunden mit Schwächegefühl, Müdigkeit bzw. Blässe. Häufig kommen auch allgemeine gastrointestinale Beschwerden hinzu: Diarrhoe, Verstopfung, Schleimhautveränderungen, Übelkeit oder Erbrechen. Vitamin B12 ist zudem im neuronalen Stoffwechsel wichtig, zur Bildung von Myelin, Neurotransmittern und Phospholipiden. Ein Mangel macht sich daher über neuropsychiatrische Symptome bemerkbar, z. B. Gedächtnisstörungen, Apathie, Depression, Verwirrtheit oder Demenz. Aber auch neurologische Erscheinungen wie Gangunsicherheit, Sensibilitätsstörungen (Kribbeln, „Ameisenlaufen“, Prickeln, Jucken) oder Lähmungserscheinungen sind typisch für Vitamin B12-Mangelerscheinungen. Für Wachstum und Zellteilung wird Vitamin B12 benötigt, sowie auch zum Aufbau der Erbsubstanz DNS. Die Bildung der Erythrozyten durch Zellteilung/-reifung aus unreifen kernhaltigen Vorstufen im Knochenmark benötigt Vitamin B12. Verschiedene Aminosäuren werden mit Hilfe von Vitamin B12 verstoffwechselt und der Abbau von ungeradzahligen Fettsäuren benötigt dieses Vitamin ebenso. Vitamin B12 ist als Cofaktor zweier sehr wichtiger Enzymreaktionen sehr wichtig für die Zelle. Im Zellinneren wird Methylcobalamin benötigt, um Homocystein in Methionin zu überführen. Gleichzeitig wird reaktionsfähige Tetrahydrofolsäure (THF) gebildet, die für zahlreiche Stoffwechselwege benötigt wird. Wenn Methylcobalamin fehlt, kommt es zum Anstieg von Homocystein, zu Störungen des Folsäure-Stoffwechsels, der DNS-Synthese und der Hämatopoese. Die zweite wichtige enzymatische Reaktion läuft in den Mitochondrien ab. Hier wird das Adenosylcobalamin benötigt, um aus Methylmalonyl-CoA das Succinyl-CoA zu bilden, welches in den mitochondrialen Citratzyklus eingespeist wird. Bei einem Mangel an Adenosylcobalamin wird kein Succinyl-CoA mehr gebildet, das Methylmalonyl-CoA wird zur Methylmalonsäure umgewandelt, welche die neurologische bzw. psychiatrische Symptomatik verursacht. Bereits in den 1950er Jahren begannen man, sich auf die schmerzlindernden Wirkungen der Verabreichung von Vitamin B12 zu konzentrieren, mit einigen potenziell beeindruckenden klinischen Ergebnissen ↗︎ Link 1 | ↗︎ Link 2. Leider ließ in den folgenden Jahrzehnten das Interesse an der klinischen Anwendung von Vitaminen und Mineralien zugunsten von pharmazeutischen Behandlungen nach. Mit dem Aufkommen der Opioidepidemie sind alternative und ergänzende Ansätze zur Schmerzlinderung mehr denn je erforderlich, um den Einsatz und die Abhängigkeit von Opioidmedikamenten zu verringern. Vitamin B12 wurde bisher erfolgreich zur Behandlung von Patienten mit chronischen Schmerzzuständen wie Kreuzschmerzen, diabetischer Neuropathie, postherpetischer Neuralgie und aphthösen Ulzera eingesetzt. Weitere Indikationen für Vitamin B12: Hyperhomocysteinämie Mitochondriale Dysfunktion Nitrosativer Stress Altersbedingte Gedächtnisstörungen, Demenz, Alzheimer Depressionen Infektionen mit Helicobacter pylori Hashimoto-Thyreoiditis Entzündliche Hauterkrankungen, z. B. Psoriasis, Neurodermitis Herpes zoster Chronisch-atrophische Gastritis Morbus Crohn Multiple Sklerose Neuralgien, z. B. Trigeminusneuralgie Perniziöse Anämie Schlafstörungen Rekonvaleszenz Leistungssport Herz-Kreislauf-Erkrankungen Männliche Infertilität Stress und Konzentrationsschwierigkeiten. Auch in der schulmedizinischen Forschung wird den Wirkungen von Vitamin B12 viel Aufmerksamkeit gewidmet. ↗︎ Hier finden Sie eine Übersicht aktueller und abgeschlossener klinischer Studien. Die täglich empfohlene Zufuhr beträgt 3 µg/Tag bzw. 3,5 – 4 µg/Tag (Schwangere und Stillende). Bei älteren Patienten mit atrophischer Gastritis (verminderte Sekretion von HCl, Pepsinogen und Intrinsic-Factor) kann eine Supplementierung von > 100 µg/Tag empfohlen werden. Diese Lebensmittel sind besonders reich an Vitamin B12 Lebensmittel / Vitamin B12-Gehalt in µg pro 100 g Lebensmittel Leber (roh)   39 – 65 Kalbsniere   28 Austern   15 Rind   2,9 – 5,2 Makrele   9 Hering   8,5 Miesmuschel   7,6 Thunfisch   4,25 Lammkeule (roh)   3,6 Seelachs   3,5 Salami   3,3 Camembert   3,1 Emmentaler   3,1 Edamer   2,1 Hühnerei   1,9 Brie   1,7 Garnelen   1,7 Körniger Frischkäse   1 Schweineschnitzel   1 Magerquark   0,9 Kuhmilch (1,5 /3,5% Fett)   0,4 Huhn   0,4 Alkoholfreies Bier, Malzbier   Spuren Sauerkraut   Spuren In einer für den Menschen verfügbaren Form kommt Vitamin B12 fast nur in tierischen Lebensmitteln vor. Mit herkömmlichen Lebensmitteln können Veganer daher ihre Vitamin B12-Versorgung nicht sicherstellen. Sie sollten zusätzlich ein Vitamin B12-Präparat einnehmen, um einem möglichen Mangel vorzubeugen. Quellen: Ross AC et al. (Eds.) Modern nutrition in Health and Disease. 11th Ed. 2014, Kluyver U. Gröber: Mikronährstoffe – Metabolic tuning – Prävention – Therapie Alberts B, Johnson A, Lewis J, et al.: Molecular Biology of the Cell. 2017 Berg JM, Tymoczko JL, Stryer L. Stryer: Biochemie. 2018 R. Meyer: Chronisch gesund. 2009